

IQS316 Design Guide

IQ Switch
®
 - ProxSense

TM
 Series

Multi-channel Integrated Proximity Sensor with Micro-Processor Core

This design guide provides a description of the communication interface between the master and

the IQS316 controller. The Memory Map of the IQS316 is provided in this document, followed by a

description of each register and instruction. The IQS316 communicates in I2C or SPI mode, both

using a Memory Mapped structure. The last section of this document is dedicated to an example

implementation and provides example code.

Contents

IQS316 Design Guide .. 1

1 Memory Map ... 4

1.1 General Memory Map Structure ... 4

1.2 IQS316 Memory Map .. 5
1.2.1 Device Information ... 5
1.2.2 Device Specific Data .. 6
1.2.3 Proximity Status Bytes .. 6
1.2.4 Touch Status Bytes .. 6
1.2.5 Halt Bytes .. 7
1.2.6 Active Bytes ... 7
1.2.7 Current Samples .. 7
1.2.8 Long-Term Averages and Thresholds .. 9
1.2.9 Device Settings .. 11

1.3 Memory Map Description.. 18
1.3.1 Device Information ... 18
1.3.2 Device Specific Data .. 18
1.3.3 Proximity Status Bytes .. 19
1.3.4 Touch Status Bytes .. 19
1.3.5 Halt Bytes .. 19
1.3.6 Active Bytes ... 19
1.3.7 Current Samples .. 19
1.3.8 Long-Term Averages & Touch/Prox Thresholds ... 20
1.3.9 Device Settings .. 21

2 General Implementation hints .. 29

2.1 Communication window .. 29
2.1.1 SPI Communication window ... 29
2.1.2 I

2
C Communication window.. 29

2.2 Startup Procedure ... 29

2.3 General I
2
C Hints ... 29

2.3.1 I
2
C Pull-up resistors ... 29

2.3.2 MCLR ... 30
2.3.3 Reset Device while using I

2
C ... 30

3 Sample implementation .. 30

3.1 Overview.. 30
3.1.1 Communications: .. 31
3.1.2 Data Retrieval: .. 33
3.1.3 Data Processing: .. 34

3.2 Functions ... 35
3.2.1 Main Function ... 35
3.2.2 Init ... 35
3.2.3 Comms_init ... 36
3.2.4 CommsIQS316_send ... 36
3.2.5 CommsIQS316_Start_Write .. 36
3.2.6 CommsIQS316_Start_Read ... 36
3.2.7 CommsIQS316_Write.. 37
3.2.8 CommsIQS316_Read... 37

3.2.9 CommsIQS316_Read_Next ... 37
3.2.10 CommsIQS316_Terminate .. 37
3.2.11 CommsIQS316_Initiate_Conversion ... 37
3.2.12 Comms_Error .. 37
3.2.13 IQS316_Settings ... 38
3.2.14 IQS316_New_Conversion ... 38

3.3 Sample Code .. 38
3.3.1 Global Variables .. 38
3.3.2 Functions ... 38
3.3.3 Constant Declarations ... 43

1 Memory Map

1.1 General Memory Map Structure

A general I2C and SPI Memory Map is defined so that all ProxSense devices can use a standard
framework. The general mapping is shown below.

Table 1.1 IQS316 Memory Mapping

Address Access Size(Bytes)
Device Information

00H-0FH R 16

Address Access Size(Bytes)
Device Specific Data

10H-30H R 32

Address Access Size(Bytes)
Proximity Status Bytes

31H-34H R 4

Address Access Size(Bytes)
Touch Status Bytes

35H-38H R 4

Address Access Size(Bytes)

Halt Bytes
39H-
3CH

R 4

Address Access Size(Bytes)

Active Bytes (indicate cycle)
3DH-
41H

R 4

Address Access Size(Bytes)
Current Samples

42H-82H R 64

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 5 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Access Size(Bytes)

LTAs
83H-
C3H

R/W 64

Address Access Size(Bytes)

Device Settings
C4h-
FDh

R/W 64

* Note ‘FE’ and ‘FF’ are reserved for other functions in communication.

1.2 IQS316 Memory Map

1.2.1 Device Information

Address Product Number

00H Bit 7 6 5 4 3 2 1 0

Access Value 27 (Decimal)

R

Address Version Number

01H Bit 7 6 5 4 3 2 1 0

Access Value Variable

R

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 6 of 45

All Rights Reserved. Revision 0.01 November 2010

1.2.2 Device Specific Data

Address XY Info 1 (UI_FLAGS0)

10H Bit 7 6 5 4 3 2 1 0

Access Value SHOW_RESET MODE_INDICATOR ~ ~ ~ ATI_BUSY RESEED_BUSY NOISE

R

1.2.3 Proximity Status Bytes

Only the proximity status of the channels relating to the current group is available here.

Address Proximity Status (Group dependant)

31H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 CH3 CH2 CH1 CH0

R Name If Group = 1 CH7 CH6 CH5 CH4

 Name If Group = 2 CH11 CH10 CH9 CH8

 Name If Group = 3 CH15 CH14 CH13 CH12

 Name If Group = 4 CH19 CH18 CH17 CH16

1.2.4 Touch Status Bytes

Only the touch status of the channels relating to the current group is available here.

Address Touch Status (Group dependant)

35H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 ~ ~ ~ ~

R Name If Group = 1 CH7 CH6 CH5 CH4

 Name If Group = 2 CH11 CH10 CH9 CH8

 Name If Group = 3 CH15 CH14 CH13 CH12

 Name If Group = 4 CH19 CH18 CH17 CH16

*Note: This byte is not used for Group 0 (Prox Mode)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 7 of 45

All Rights Reserved. Revision 0.01 November 2010

1.2.5 Halt Bytes

Only the filter halt status of the channels relating to the current group is available here.

Address Halt Status (Group dependant)

39H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 CH3 CH2 CH1 CH0

R Name If Group = 1 CH7 CH6 CH5 CH4

 Name If Group = 2 CH11 CH10 CH9 CH8

 Name If Group = 3 CH15 CH14 CH13 CH12

 Name If Group = 4 CH19 CH18 CH17 CH16

1.2.6 Active Bytes

The group number is given here.

Address Group Number

3DH Bit 7 6 5 4 3 2 1 0

Access Value Variable (0-4)

R Note Indicates which group’s data is currently available

1.2.7 Current Samples

The Current Samples of the current group are available here.

Address Current Sample CH0 / CH4 / CH8 / CH12 / CH16

42H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 8 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Current Sample CH0 / CH4 / CH8 / CH12 / CH16

43H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

Address Current Sample CH1 / CH5 / CH9 / CH13 / CH17

44H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Current Sample CH1 / CH5 / CH9 / CH13 / CH17

45H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Current Sample CH2 / CH6 / CH10 / CH14 / CH18

46H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 9 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Current Sample CH2 / CH6 / CH10 / CH14 / CH18

47H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

Address Current Sample CH3 / CH7 / CH11 / CH15 / CH19

48H Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH byte)

R Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

Address Current Sample CH3 / CH7 / CH11 / CH15 / CH19

49H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

1.2.8 Long-Term Averages and Thresholds

The Long-Term averages, and each individual channels thresholds, of the current group are
available here to read AND overwrite.

Address Long-Term Average CH0 / CH4 / CH8 / CH12 / CH16

83H Bit 7 6 5 4 3 2 1 0

Access Value Touch Threshold Prox Threshold Variable (HIGH byte)

R/W Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 10 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Long-Term Average CH0 / CH4 / CH8 / CH12 / CH16

84H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH0 (Group0) / CH4 (Group1) / CH8 (Group2) /
CH12 (Group3) / CH16 (Group4)

Address Long-Term Average CH1 / CH5 / CH9 / CH13 / CH17

85H Bit 7 6 5 4 3 2 1 0

Access Value Touch Threshold Prox Threshold Variable (HIGH byte)

R/W Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Long-Term Average CH1 / CH5 / CH9 / CH13 / CH17

86H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH1 (Group0) / CH5 (Group1) / CH9 (Group2) /
CH13 (Group3) / CH17 (Group4)

Address Long-Term Average CH2 / CH6 / CH10 / CH14 / CH18

87H Bit 7 6 5 4 3 2 1 0

Access Value Touch Threshold Prox Threshold Variable (HIGH byte)

R/W Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 11 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Long-Term Average CH2 / CH6 / CH10 / CH14 / CH18

88H Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH2 (Group0) / CH6 (Group1) / CH10 (Group2) /
CH14 (Group3) / CH18 (Group4)

Address Long-Term Average CH3 / CH7 / CH11 / CH15 / CH19

89H Bit 7 6 5 4 3 2 1 0

Access Value Touch Threshold Prox Threshold Variable (HIGH byte)

R/W Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

Address Long-Term Average CH3 / CH7 / CH11 / CH15 / CH19

8AH Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW byte)

R/W Note CH3 (Group0) / CH7 (Group1) / CH11 (Group2) /
CH15 (Group3) / CH19 (Group4)

1.2.9 Device Settings

It is attempted that the commonly used settings are situated closer to the top of the memory block.
Settings that are regarded as more ‘once-off’ are placed further down.

Address UI Settings 0 (UI_SETTINGS0)

C4H Bit 7 6 5 4 3 2 1 0

Access Name RESEED ATI_MODE PROX
RANGE

TOUCH
RANGE

FORCE
PROX
MODE

FORCE
TOUCH
MODE

ND 0

R/W Default 0 0 1 0 0 0 1 0

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 12 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Power Settings (POWER_SETTINGS)

C5H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ SLEEP MAIN_OSC LP1 LP0

R/W Default ~ ~ ~ ~ 0 0 0 0

Address ProxSense Module Settings 1 (PROX_SETTINGS_1)

C6H Bit 7 6 5 4 3 2 1 0

Access Name CXVSS ZC_EN HALT1 HALT0 AUTO_
ATI

CXDIV2 CXDIV1 CXDIV0

R/W Default 1 0 0 1 0 0 1 0

Address ProxSense Module Settings 2 (PROX_SETTINGS_2)

C7H Bit 7 6 5 4 3 2 1 0

Access Name ~ SHIELD_
EN

STOP_
COMMS

ACK_
RESET

SKIP_
CONV

ACF_
DISABLE

LTN_
DISABLE

WDT_
DISABLE

R/W Default ~ 0 0 0 0 0 0Note 1 1

Note1: The LTN filter has a limitation, it is default ON, but is recommended that this feature be
disabled by the user (setting the bit).

Address ATI Multiplier C (ATI_MULT1)

C8H Bit 7 6 5 4 3 2 1 0

Access Name If Group = 0 CH3 CH2 CH1 CH0

R/W If Group = 1 CH7 CH6 CH5 CH4

 If Group = 2 CH11 CH10 CH9 CH8

 If Group = 3 CH15 CH14 CH13 CH12

 If Group = 4 CH19 CH18 CH17 CH16

 Default 1 1 1 1 1 1 1 1

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 13 of 45

All Rights Reserved. Revision 0.01 November 2010

Address ATI Multiplier I (ATI_MULT2)

C9H Bit 7 6 5 4 3 2 1 0

Access Name CH3 CH2 CH1 CH0 If Group = 0

R/W CH7 CH6 CH5 CH4 If Group = 1

 CH11 CH10 CH9 CH8 If Group = 2

 CH15 CH14 CH13 CH12 If Group = 3

 CH19 CH18 CH17 CH16 If Group = 4

 Default 0 0 0 0 ~ ~ ~ ~

Address ATI Compensation Setting (ATI_C0)

CAH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH0

R/W If Group = 1 CH4

 If Group = 2 CH8

 If Group = 3 CH12

 If Group = 4 CH16

Address ATI Compensation Setting (ATI_C1)

CBH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH1

R/W If Group = 1 CH5

 If Group = 2 CH9

 If Group = 3 CH13

 If Group = 4 CH17

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 14 of 45

All Rights Reserved. Revision 0.01 November 2010

Address ATI Compensation Setting (ATI_C2)

CCH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH2

R/W If Group = 1 CH6

 If Group = 2 CH10

 If Group = 3 CH14

 If Group = 4 CH18

Address ATI Compensation Setting (ATI_C3)

CDH Bit 7 6 5 4 3 2 1 0

Access Value If Group = 0 CH3

R/W If Group = 1 CH7

 If Group = 2 CH11

 If Group = 3 CH15

 If Group = 4 CH19

Address Shield Settings (SHLD_SETTINGS)

CEH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ ~ SHLD2 SHLD1 SHLD0

R/W Default 0 0 0 0 0 0 0 0

* Note this byte will be ignored if SHIELD_EN (PROX_SETTINGS_2<6>) is set (ie if
automated shield is selected).

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 15 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Unused (keep 00H)

CFH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ 0 0 0 0 0 0

R/W Default ~ ~ 0 0 0 0 0 0

Address Cx Configuration (CX_CONFIG)

D0H Bit 7 6 5 4 3 2 1 0

Access Name CX_GPIO_1 CX_GPIO_0 ~ ~ Prox Mode Group Selection

GROUP4 GROUP3 GROUP2 GROUP1

R/W Default 0 0 ~ ~ 1 1 1 1

Address DEFAULT_COMMS_POINTER

D1H Bit 7 6 5 4 3 2 1 0

Access Default 10H (Beginning of Device Specific Data)

R/W

Address Individual Channel Disable (CHAN_ACTIVE0)

D2H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH3 CH2 CH1 CH0

R/W Default ~ ~ ~ ~ 0 0 1 1

*Note: Only group 0 and 1 are default on, this is because with more than 2 channels active,
the AC Filter isn’t sampled at the optimal frequency, and thus is less effective.

Address Individual Channel Disable (CHAN_ACTIVE1)

D3H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH7 CH6 CH5 CH4

R/W Default ~ ~ ~ ~ 1 1 1 1

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 16 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Individual Channel Disable (CHAN_ACTIVE2)

D4H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH11 CH10 CH9 CH8

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Disable (CHAN_ACTIVE3)

D5H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH15 CH14 CH13 CH12

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Disable (CHAN_ACTIVE4)

D6H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH19 CH18 CH17 CH16

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Reseed (CHAN_RESEED0)

D7H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH3 CH2 CH1 CH0

R/W Default ~ ~ ~ ~ 0 0 1 1

Address Individual Channel Reseed (CHAN_RESEED1)

D8H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH7 CH6 CH5 CH4

R/W Default ~ ~ ~ ~ 1 1 1 1

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 17 of 45

All Rights Reserved. Revision 0.01 November 2010

Address Individual Channel Reseed (CHAN_RESEED2)

D9H Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH11 CH10 CH9 CH8

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Reseed (CHAN_RESEED3)

DAH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH15 CH14 CH13 CH12

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Individual Channel Reseed (CHAN_RESEED4)

DBH Bit 7 6 5 4 3 2 1 0

Access Name ~ ~ ~ ~ CH19 CH18 CH17 CH16

R/W Default ~ ~ ~ ~ 1 1 1 1

Address Auto ATI Target

DCH Bit 7 6 5 4 3 2 1 0

Access Value Variable (HIGH Byte)

R/W Default 04H (giving a Target value of = 1024 decimal)

Address Auto ATI Target

DDH Bit 7 6 5 4 3 2 1 0

Access Value Variable (LOW Byte)

R/W Default 00H (giving a Target value of = 1024 decimal)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 18 of 45

All Rights Reserved. Revision 0.01 November 2010

Address I/O Port

DEH Bit 7 6 5 4 3 2 1 0

Access Name GPIO_7 GPIO_6 GPIO_5 GPIO_4 GPIO_3 GPIO_2 GPIO_1 GPIO_0

R/W I/O’s can be read, or set/cleared here.

Address I/O Tris

DFH Bit 7 6 5 4 3 2 1 0

Access Name GPIO_7 GPIO_6 GPIO_5 GPIO_4 GPIO_3 GPIO_2 GPIO_1 GPIO_0

R/W Default 1 1 1 1 1 1 1 1

1.3 Memory Map Description

1.3.1 Device Information

Product Number

The product number for the IQS316 is 27 (decimal).

Version Number

The version number of the device ROM can be read in this byte.

1.3.2 Device Specific Data

XY Info1 (UI_FLAGS0)]

Bit 7: SHOW_RESET: This bit can be read to determine whether a reset occurred on
the device since the ACK_RESET bit has been set. The value of
SHOW_RESET can be set to ‘0’ by writing a ‘1’ in the ACK_RESET bit in the
PROX_SETTINGS_2 byte.

 0 = No reset has occurred since last cleared

 1 = Reset has occurred

Bit 6: MODE_INDICATOR: Indicates current mode of charging

 0 = Currently in Prox Mode

 1 = Currently in Touch Mode

Bit 5:3: Unused

Bit 2: ATI_BUSY: Status of automated ATI routine

 0 = Auto ATI is not busy

1 = Auto ATI in progress

Bit 1: RESEED_BUSY: Global Channel Reseed Status

0 = Reseed is not busy

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 19 of 45

All Rights Reserved. Revision 0.01 November 2010

1 = Reseed is currently taking place

Bit 0: NOISE: This bit indicates the presence of noise interference.

0 = Current cycle has not detected the presence of noise

1 = Current cycle has detected the presence of noise

1.3.3 Proximity Status Bytes

Proximity Status

The proximity status of the channels relating to the current group can be read here. The current
group can be determined by reading the Group Number register. The channels and group
numbers relate as shown in Table 1.2.

Table 1.2 Channel data available

Current Group Number Channels available

0 CH0 / CH1 / CH2 / CH3

1 CH4 / CH5 / CH6 / CH7

2 CH8 / CH9 / CH10 / CH11

3 CH12 / CH13 / CH14 / CH15

4 CH16 / CH17 / CH18 / CH19

1.3.4 Touch Status Bytes

Touch Status

The touch status of the channels relating to the current group can be read here. The current group
can be determined by reading the Group Number register. The channels and group numbers
relate as shown in Table 1.2.

1.3.5 Halt Bytes

Halt Status

The halt status of the channels relating to the current group can be read here. The current group
can be determined by reading the Group Number register. The channels and group numbers
relate as shown in Table 1.2.

1.3.6 Active Bytes

Group Number

The group number that can be read in this byte indicates which group’s data is currently
available. Group 0 is the Prox Mode group, and Group 1-4 are the Touch Mode groups.

1.3.7 Current Samples

The Current Samples for the current group can be read in their respective addresses. The
HIGH bytes and LOW bytes are found in consecutive addresses.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 20 of 45

All Rights Reserved. Revision 0.01 November 2010

1.3.8 Long-Term Averages & Touch/Prox Thresholds

The LTA values for the current group can be read in their respective addresses. The HIGH
bytes and LOW bytes are found in consecutive addresses.

The first four bits (high nibble) of each LTA HIGH Byte is the Prox and Touch Thresholds for
the respective channel. Care must be taken when overwriting a LTA that the required settings
are also included in the HIGH byte.

LTA HIGH Byte

Bit 7-6: Touch Threshold: The value of these two bits, together with the global Touch
Range bit determines the Touch Threshold, as shown in Table 1.3.

Bit 5-4: Prox Threshold: The value of these two bits, together with the Prox Range bit
determines the Prox Threshold, as shown in 0.

Bit 3-0: LTA<11:8>: The upper 4 bits of the LTA.

Table 1.3 Touch Threshold Values

Table 1.4 Prox Threshold Values

Prox Threshold <1:0>
PROX_RANGE = 0 PROX_RANGE = 1

Prox Threshold

00 2 8

01 3 16

10 4 20

11 6 30

LTA LOW Byte

Bit 7-0: LTA<7:0>: The lower byte of the LTA.

Touch Threshold <1:0>
TOUCH_RANGE = 0 TOUCH_RANGE = 1

Touch Threshold:

00 1/32 4/16

01 1/16 6/16

10 2/16 8/16

11 3/16 10/16

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 21 of 45

All Rights Reserved. Revision 0.01 November 2010

1.3.9 Device Settings

UI Settings 0 (UI_SETTINGS0)

Bit 7: RESEED: Reseed the LTA filter. This can be used to adapt to an abrupt
environment change, where the filter is too slow to track this change. Note that
with the Short and Long Halt selections, an automatic Reseed will be performed
when the halt time has expired, thus automatically adjusting to the new
surroundings.

 0 : Do not reseed

 1 : Reseed (this is a global reseed)

Bit 6: ATI_MODE: This selects which mode to perform the auto ATI routine on, and
the AUTO_ATI enable bit initiates the routine.

0 : Automated ATI will apply to Prox-Mode channels

 1 : Automated ATI will apply to Touch-Mode channels

Bit 5: PROX RANGE: Selects between two Prox threshold sets. The range is a global
setting and applies to all channels; whereby each channel can then individually
be setup to a custom threshold value within this selected range.

 0 = Lower range threshold set

 1 = Higher range threshold set

Bit 4: TOUCH RANGE: Selects between two touch threshold sets. The range is a
global setting and applies to all channels; whereby each channel can then
individually be setup to a custom threshold value within this selected range.

 0 = Lower range threshold set

 1 = Higher range threshold set

Bit 3: FORCE PROX MODE: Force charging to Prox Mode. If this bit is set, automatic
transitions between Prox and Touch Mode are overwritten.

 0 = Normal Operation

 1 = Only Prox Mode charging

Bit 2: FORCE TOUCH MODE: Force charging to Touch Mode. If this bit is set,
automatic transitions between Prox and Touch Mode are overwritten. Note: this
bit takes precedence over Bit3.

 0 = Normal Operation

 1 = Only Touch Mode charging

Bit 1: ND: Noise Detection Enable. This setting is used to enable the on-chip noise
detection circuitry. With noise detected, the noise affected samples will be
ignored, and have no effect on the Prox, touch or LTA calculations. The NOISE
bit will appropriately be set as indication of the noise status.

 0 = Disable noise detection

 1 = Enable noise detection

Bit 0: Internal: This bit should always keep the value of 0

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 22 of 45

All Rights Reserved. Revision 0.01 November 2010

Power Settings (POWER_SETTINGS)

Bit 7:4: Unused

Bit 3: SLEEP: This bit puts the IC in SLEEP mode. Sleep is entered after termination
of the communication window. No processing is done in the sleep state. This
function is available in both SPI and I

2
C. In SPI, to wake the device from sleep,

the /SS line is pulled low, thus selecting the device, whereby waking it from
sleep. Communication with the device is then immediately resumed.

In I
2
C, to wake the device, the master simply is required to begin communication

with the device.

In both cases, when the IC is woken from sleep, the firmware returns to the
same communication window that was last used to put the device to sleep, thus
no new sample data is available. Note that if the IC has been in SLEEP for a
considerable time, it is recommended to reseed the channels, if no interaction is
assumed.

 0 : No effect

 1 : Puts device in sleep mode

Bit 2: MAIN_OSC: Select the frequency of the main oscillator

 0 = 8MHz

 1 = 4MHz (not recommended)

Bit 1-0: LP: Low Power (LP) options

 00 = Normal Power

 01 = LP1 ~100ms charging

 10 = LP2 ~ 200ms charging

 11 = LP3 ~ 300ms charging

ProxSense Module Settings 1 (PROX_SETTINGS_1)

Bit 7: CXVSS: Ground Cx channels when inactive. The default and recommended
setting is grounded. The result is illustrated by means of an example. If for
instance Group 1 is charging, all surrounding sensing lines not part of Group 1
are grounded, and thus in a defined state. If the Cx’s are set to float, then their
state is unknown, and the sensors influence each other greatly, which is not
ideal.

 0 = Cx’s float

 1 = Cx’s grounded

Bit 6: ZC_EN: Enable zero-cross (ZC) triggered conversions. An input signal must be
connected to the ZC_IN I/O to synchronise the charging to. This is occasionally
used in high AC noise applications, whereby synchronising the charging to the AC,
the noise is reduced. This input allows the timing of the conversions to be
accurately controlled. Possibly the conversions can be sliced between noise events
to keep the samples noise free.

 0 = No Zero-Cross signal implemented

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 23 of 45

All Rights Reserved. Revision 0.01 November 2010

 1 = Conversions synchronised to ZC_IN

Bit 5-4: HALT: LTA Filter Halt selections

 00 = Short (LTA filter halts for ~20 seconds, then reseeds)

 01 = Long (LTA filter halts for ~40 seconds, then reseeds)

 10 = Never (LTA filter never halts)

 11 = Always (LTA filter is halted permanently)

Bit 3: AUTO_ATI: Enable the automated ATI routine. By enabling this bit, the device will
perform an automated ATI routine on the selected groups (selected by ATI_MODE),
and will attempt to reach the target setup in AUTO-ATI Target

 0 = No action

 1 = Begin auto ATI routine

Bit 2-0: CXDIV[2:0]: Selection bits for charge transfer frequency

Table 1.5 Charge transfer frequency

MAIN_OSC = 4MHz MAIN_OSC = 8MHz

CXDIV Conversio
n

Frequency

CXDIV Conversio
n

Frequency

000 2MHz 000 4MHz

001 1MHz 001 2MHz

010 500kHz 010 1MHz

011 250kHz 011 500kHz

100 125kHz 100 250kHz

101-
111

62.5kHz
101-
111

125kHz

The charge transfer frequency is a very important parameter. Dependant on the design
application, the device frequency must be optimised. For example, if keys are to be used in an
environment where steam or water droplets could form on the keys, a higher transfer
frequency improves immunity. Also, if a sensor antenna is a very large object/size, then a
slower frequency must be selected since the capacitance of the sensor is large, and a slower
frequency is required to allow effective capacitive sensing on the sensor.

ProxSense Module Settings 2 (PROX_SETTINGS_2)

Bit 7: Unused

Bit 6: SHIELD_EN: Automatic shield implementation. Each group will have a shield
setup automatically on the two shield outputs, according to Table 1.6.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 24 of 45

All Rights Reserved. Revision 0.01 November 2010

Table 1.6 Automated Shield Channels

Group SHLD_A SHLD_B

0 CxA0 CxB0

1 CxA0 CxB0

2 CxA1 CxB1

3 CxA2 CxB2

4 CxA3 CxB3

 0 = Shield is set by SHIELD_SETTING byte

 1 = Shield is automatically loaded according to Table 1.6

Bit 5: STOP_COMMS: Skip the SPI/I
2
C communication window. This can be used if

the master does not want to service the IQS316 every charge cycle. Normal
operation of the IC continues, and only the communication window is bypassed.
Only when the master initiates, or when a Prox is sensed, will the
communication be resumed.

 0 = Normal Communication

 1 = Communication aborted until Prox detected, or master forces a resume

Bit 4: ACK_RESET: Acknowledge ‘SHOW_RESET’.

 0 = Nothing

 1 = Clear the flag SHOW_RESET (send only once)

Bit 3: SKIP_CONV: Don’t perform conversion. This can be used, for example if
settings for all the groups are to be written. The current groups’ settings can be
completed, and the communication window can then be terminated. The device
then loads the next groups’ data (without performing a conversion), and the next
communication window is available. Stepping through all the groups can this be
done without the need to wait for a conversion to complete.

 0 = Normal operation

1 = Skip conversions (Load next groups data and return to communication
window)

Bit 2: ACF_DISABLE: Disable the AC Filter on Group 0.

 0 = AC Filter is enabled

 1 = AC Filter is disabled

Bit 1: LTN_DISABLE: Disable the LTN Filter on Group 0.

 0 = LTN Filter is enabled

 1 = LTN Filter is disabled (recommended due to device limitation)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 25 of 45

All Rights Reserved. Revision 0.01 November 2010

Bit 0: WDT_DISABLE: Device watchdog timer (WDT) disable.

 0 = Enabled

 1 = Disabled

ATI Multiplier C (ATI_MULT1)

The ATI Multiplier and ATI Compensation bits allow the controller to be compatible with a large
range of sensors, and in many applications with different environments. ATI allows the user to
maintain a specific sample value on all channels. The ATI Multiplier parameters would
produce the largest changes in sample values and can be thought of as the high bits of ATI.
The ATI Compensation bits are used to influence the sample values on a smaller scale to
provide precision when balancing all channels as close as possible to the target. The ATI
Multiplier parameters are further grouped into two parameters namely ATI Multiplier C and ATI
Multiplier I. ATI multiplier I consists of a single bit and has the biggest effect on the sample
value and can be considered as the highest bit of the ATI parameters.

The ATI_MULT1 byte contains the ATI Multipliers C settings for all channels of the current
group. Each channel has two ATI Multiplier C bits where the value of ‘11’ would provide the
highest CS value and the value of ‘00’ would provide the lowest.

ATI Multiplier I (ATI_MULT2)

The ATI Multiplier I bit is the ATI bit which would make the largest adjustment to the sample
value. The ATI_MULT3 byte contains the ATI Multiplier I settings for all the channels in the
current group, where a value of ‘1’ would produce the largest sample value and a value of ‘0’
would produce the smallest sample value.

ATI Compensation Settings

The ATI Compensation parameter can be configured for each channel in a range between 0-
255 (decimal). The ATI compensation bits can be used to make small adjustments of the
sample values of the individual channels.

Shield Settings (SHLD_SETTINGS)

If the SHIELD_EN bit is set, the value written to the SHLD_SETTINGS register is simply
ignored. Otherwise the shield can be manually configured here.

The SHLD_SETTINGS byte is used to enable or disable the two active shields. Bit 0-2 control
which sensor lines are to be shielded on SHLD_A and SHLD_B. By default the shields are
disabled with SHLD_SETTINGS = 0. Manual configuration is implemented as shown in Table
1.7.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 26 of 45

All Rights Reserved. Revision 0.01 November 2010

Table 1.7 SHLD_A and SHLD_B configuration

SHLD_SETTINGS<2:0> SHLD_A input
connected to

SHLD_B input
connected to

000 SHLDL off SHLDR off

001 CxA6 CxB6

010 CxA5 CxB5

011 CxA4 CxB4

100 CxA3 CxB3

101 CxA2 CxB2

110 CxA1 CxB1

111 CxA0 CxB0

Cx Configuration (CX_CONFIG)

Bit 7: CX_GPIO_1: Cx or I/O selection.

 0 = CxA7, CxA6, CxB7 and CxB6 are used as sensor lines

 1 = GPIO_7, GPIO_6, GPIO_5 and GPIO_4 are implemented as I/O’s

Table 1.8 Upper Nibble of I/O Port Selection

CX_GPIO_1
Selection

CxA7 / GPIO_7
function

CxA6 / GPIO_6
function

CxB7 / GPIO_5
function

CxB6 / GPIO_4
function

0 CxA7 CxA6 CxB7 CxB6

1 GPIO_7 GPIO_6 GPIO_5 GPIO_4

Bit 6: CX_GPIO_0: Cx or I/O selection.

 0 = CxA5, CxA4, CxB5 and CxB4 are used as sensor lines

 1 = GPIO_3, GPIO_2, GPIO_1 and GPIO_0 are implemented as I/O’s

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 27 of 45

All Rights Reserved. Revision 0.01 November 2010

Table 1.9 Lower Nibble of I/O Port Selection

CX_GPIO_1
Selection

CxA5 / GPIO_3
function

CxA4 / GPIO_2
function

CxB5 / GPIO_1
function

CxB4 / GPIO_0
function

0 CxA5 CxA4 CxB5 CxB4

1 GPIO_3 GPIO_2 GPIO_1 GPIO_0

Bit 3-0: PM_CX_SELECT: Groups who’s Cx’s are included in Prox Mode charging

 0 = Group included

 1 = Group not included

In this register, a selection of groups 4-1 is made to determine which sensor lines will be used
during Prox Mode charging (Group 0). Each bit therefore represents four sensor lines to be
added or removed from Group 0.

*Note that at least two groups have to be set for this selection.

Table 1.10 Sensor Line Selection for Prox Mode

CX_CONFIG bit CH0 CH1 CH2 CH3

0 (Group 1 channels) CxA0 CxB0 CxA4 CxB4

1 (Group 2 channels) CxA1 CxB1 CxA5 CxB5

2 (Group 3 channels) CxA2 CxB2 CxA6 CxB6

3 (Group 4 channels) CxA3 CxB3 CxA7 CxB7

To help illustrate this, an example is provided. If bit 0 and 2 are set in CX_CONFIG, the
channels used in Prox Mode are shown in Table 1.11. It can be seen that the Proximity
channel 0 (CH0) consists of the two sensor lines CxA0, and CxA2. And similarly the CH1 to
CH3’s sensor lines can be noted. This example thus has 8 of the 16 sensor lines also
providing Proximity input. The other 8 have no influence on the Prox Mode channels.

Table 1.11 PM_CX_SELECT example

It can be seen that if all 4 bits are set, all 16 of the Cx sensor lines are antenna inputs for the
Prox Mode. It is recommended that if the design has any sensor buttons close to noise
sources (negative influence on proximity), that these can be chosen to fall in the same group,
which can then be excluded from Prox Mode by means of the PM_CX_SELECT register.

CX_CONFIG CH0 CH1 CH2 CH3

CX_CONFIG= 04H CxA0, CxA2 CxB0, CxB2 CxA4, CxA6 CxB4, CxB6

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 28 of 45

All Rights Reserved. Revision 0.01 November 2010

Default Comms Pointer

The value stored in this register will be loaded into the Comms Pointer at the start of a
communication window. For example, if the design only requires the Proximity Status
information each cycle, then the Default Comms Pointer can be set to ADDRESS ‘31H’. This
would mean that at the start of each communication window, the comms pointer would already
be set to the Proximity Status register, simply allowing a READ to retrieve the data, without the
need of setting up the address.

Individual Channel Disable

Each channel can be individually disabled in these registers. Note that the current group
number has no influence on these registers as each channel disable register has a unique
address.

Individual Channel Reseed

Each channel can be individually reseeded in these registers. Note that the current group
number has no influence on these registers as each channel reseed register has a unique
address.

Auto-ATI Target

The automated ATI target can be set in these two consecutive registers. These registers are
used for the Prox Mode, as well as the Touch Mode ATI targets. The selection between which
of these modes to Auto-ATI, is set by ATI_MODE in UI_SETTINGS0<6>.

For example, if the Prox Mode channels must be tuned to sample values = 800, and the Touch
Mode channels to sample values = 400, the following steps are taken:

Step 1: Set Auto ATI Target to 800

Step 2: Select Prox Mode for ATI by clearing ATI_MODE bit (UI_SETTINGS0<6> = 0)

Step 3: Start Auto-ATI procedure by setting AUTO-ATI bit (PROX_SETTINGS<3>)

Step 4: Wait for Prox Mode ATI to complete, which is when ATI_BUSY bit clears
(UI_FLAGS0<2> = 0)

Step 5: Set Auto ATI Target to 400

Step 6: Select Touch Mode for ATI by setting ATI_MODE bit (UI_SETTINGS0<6> = 1)

Step 7: Start Auto-ATI procedure by setting AUTO-ATI bit (PROX_SETTINGS<3>)

I/O Port and Tris

When setup to be used as I/O’s (CX_GPIO_1 and CX_GPIO_0 settings), the data direction
can be set in the I/O Tris register as shown in Table 1.12.

Table 1.12 Tris Configuration

Tris bit
<7:0>

I/O configuration

0 Output

1 Input / Tri-state

If setup as outputs, the state of the I/O’s can then be set in the register as shown in Table 1.13

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 29 of 45

All Rights Reserved. Revision 0.01 November 2010

Table 1.13 I/O Outputs

Port bit
<7:0>

I/O status

0 Output LOW

1 Output HIGH

If setup as inputs, the status of the I/O’s can be read from the register.

2 General Implementation hints

When implementing the communication interface with the IQS316, please refer to the IQS316
datasheet for a detailed description of the SPI and I

2
C communication. This section contains

some general guidelines and hints regarding the communication interface.

2.1 Communication window

Upon implementing either SPI or I
2
C it is important to note the difference in the working of the

communication window.

2.1.1 SPI Communication window

When communicating via SPI, the communication window will remain open until a new
conversion command is received (FE written to IQS316 in ‘address’ time-slot). While the
communication window is open the master may initiate and terminate as many read and write
communication sessions as required.

2.1.2 I2C Communication window

When communicating via I
2
C, the communication window will automatically close when a

STOP bit is received by the IQS316. The IQS316 will then proceed to start with a new
conversion and the READY line will be pulled low until the new conversion is complete.

Note that there is no command via I
2
C to initiate a new conversion. To perform multiple read

and write commands, the repeated start function of the I
2
C must be used to stack the

commands together.

2.2 Startup Procedure

After sending initial settings to the IQS316, it is important to execute a reseed. It is suggested
to execute an estimated 24 conversions after initial settings before calling for a reseed, to
allow the system to stabilize. This translates to a startup time of approximately 350ms.

2.3 General I2C Hints

2.3.1 I2C Pull-up resistors

When implementing I
2
C it is important to remember the pull-up resistors on the data and clock

lines. 4.7kΩ is recommended, but for lower clock speeds bigger pull-ups will reduce power
consumption.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 30 of 45

All Rights Reserved. Revision 0.01 November 2010

2.3.2 MCLR

Suggested implementation is to have the IQS316 and the pull-up resistors connect to the
power supply of the device. The MCLR pin should then be used to reset the IQS316.
Remember to hold the MCLR low until master setup has been done.

2.3.3 Reset Device while using I2C

When a reset occurs, some care needs to be taken to ensure that the IQS316 restarts
correctly. The reset pin needs to be LOW before the IQS316 can be initialised, else the
master will read a ready signal prematurely. To accomplish this without any delays, define the
ready pin on the master as an output and pull it LOW. Then, redefine it as an input line just
before initializing the IQS316.

3 Sample implementation

A minimalist implementation of the IQS316 is described in this section. This implementation
sets the thresholds of the IQS316 and retrieves Prox and touch data. For this implementation
a PIC18F4550 was used as the master device. The data may be used as the user prefers, an
output section is therefore not included in this section.

Communication between the master and the IQS316 was done in SPI. Libraries for I
2
C are

also available. For an explanation of the I
2
C protocol, refer to the IQS316 datasheet.

3.1 Overview

This implementation initiates communication between the master (PIC18F4550) and the
IQS316. The master sends commands to configure the IQS316. Once the configuration is
completed, the program enters an infinite loop.

In each loop cycle:

 A command is sent to the IQS316 to start new conversion.

 The master waits until the conversion is completed. (Ready signal)

 Data is read from IQS316.

 If a PROX or TOUCH is registered, a routine is executed to process the data retrieved.

 Additional communication with IQS316 if required (sending new commands).

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 31 of 45

All Rights Reserved. Revision 0.01 November 2010

Start

Initiate

conversion

Additional

comms

between

Master and

IQS316

Startup routine

of Master

Start Comms

with IQ316

Configure

IQS316

Wait for

conversion to

finish

Retrieve data

from IQS316

TOUCH/PROX

Detected?

Process data

Yes

No

Figure 3.1 Overview

3.1.1 Communications:

The master initiates communication with the IQS316. For a detailed description of the
communication protocol refer to the IQS316 datasheet.

Writing to IQS316: The master initiates communication by writing a zero (00H) to the IQS316.
Next the address to write to is sent to the IQS316. The byte sent after the address will be
written to that address.

Another address can now be sent to the IQS316. Communication is terminated by sending
FFH instead of an address.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 32 of 45

All Rights Reserved. Revision 0.01 November 2010

 E.g. write 35H to address 12H:

 Master writes 00H to IQS316. (Initiates comms in write mode, FFH returned)

 Master writes 12H to IQS316. (Setup address, returns 00H)

 Master writes 35H to IQS316. (35H stored at address 12H, 01H returned)

 Master writes FFH to IQS316. (end write cycle, 00H returned)

MCU

Header

FF

00

01

00

01

Control

W
00

Address

n

Data n

Address

n+1

Data n+1

00

Stop

FF

SOMI

MOSI

Figure 3.2 SPI write sequence

Additionally, if the master writes FEH to the IQS316, a new conversion will be initiated and the
communication window will be terminated.

Reading from the IQS316: The master initiates communication by writing a one (01H) to the
IQS316. During each communication cycle (one byte transmitted and received) the data
stored at the location indicated by the address pointer will be sent to the master. The address
pointer value in turn is replaced by the data sent to the IQS316 by the master. However, upon
receiving FEH from the master the address pointer is simply incremented. The default value of
the address pointer is 10H. The master ends this transfer by writing FFH to the IQS316.

 E.g. read address 15H and 16H:

 Master writes 01H to IQS316. (Initiates comms in read mode, FFH returned)

Master writes 15H to IQS316. (set pointer to 15H, data stored at current pointer
address returned)

 Master writes FEH to IQS316 (pointer incremented, data stored at 15H returned)

 Master writes FFH to IQS316. (end read cycle, data stored at 16H returned)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 33 of 45

All Rights Reserved. Revision 0.01 November 2010

MCU

Header

FF

Data @

pointer

Data @

pointer+1

Data @

Adr 12

Data @

Adr 13

Control

R
01

FE

12

FE

Stop

FF

Overwrite Pointer with

address ‘12’

SOMI

MOSI

Figure 3.3 SPI read sequence

Please Note: The internal address pointer is only reset to the default value (10H) when a new
conversion is called. It is not reset when switching between read and write routines.

3.1.2 Data Retrieval:

The IQS316 continuously checks group 0 until a PROX is detected. The IQS316 now checks
groups 1-4 for PROX/TOUCH conditions. These are stored in the status registers during each
group. If no TOUCH or PROX conditions occur for ~4 seconds, the IQS316 returns to only
checking group 0. Group 1-4 are occasionally charged to keep the LTAs updated.

For a detailed explanation of the working of the different Charge Transfer Modes of Operation,
refer to the ProxSense Module section of the datasheet.

To retrieve data from the IQS316, the group number has to be checked first. If the group
number is zero, no PROX/TOUCH has been detected. Otherwise, all four group numbers has
to be checked for the various PROX/TOUCH conditions. New conversions have to be
initialized to obtain results from each group.

The following flow diagram illustrates an example of a data retrieving algorithm:

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 34 of 45

All Rights Reserved. Revision 0.01 November 2010

Start

Master reads

Group Number

Group Number = 0?

No

Master reads

Prox status

Master initiates

new conversion

Master reads

Group Number

Have read all 4

groups?

Yes

Return

Master reads

Touch status

No TOUCH/

PROX

Return

Yes

No

Set TOUCH/

PROX flag

Figure 3.4 Data Retrieval

3.1.3 Data Processing:

If no TOUCH/PROX has been detected, no data processing needs to be done. If the
TOUCH/PROX flag is set during the data retrieval routine, a data processing routine may be
called.

This routine will read the PROX and TOUCH data of the 16 channels, as stored in a global
data structure by the data retrieval routine and perform the required routines.

(This will depend on the specific application, whether to switch on LEDs, to perform
calculations, etc.)

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 35 of 45

All Rights Reserved. Revision 0.01 November 2010

3.2 Functions

3.2.1 Main Function

The Main function sets up the hardware by writing all required initialization data to the
controller. After initialization the function runs the infinite loop to retrieve data from the IQS316
and to process the data in the case that a Prox is detected.

Start

Call Init function

Call Process

Data function

Call Data

Retrieval

Function

Prox_detected flag set?

Yes

No

Figure 3.5 Main Function

3.2.2 Init

The init function executes commands setting up the system. The ports and registers of the
PIC18F4550 are set first. The output pin connected to the IQS316 MCLR is set to high. The
setup of the SPI is done by calling the Comms_init function. Once the SPI communication is
initialized, commands are sent to the IQS316 via the SPI to set up the IQS316. This is done by
calling the IQS316_Settings function. It is advised to execute all other hardware initialization
routines before initializing the IQS316, as other hardware may cause environmental conditions
for the IQS316 to change.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 36 of 45

All Rights Reserved. Revision 0.01 November 2010

Start

PORT settings

of PIC18F4550

Call IQS316

Settings

function

Call SPI Init

function

Call LCD Init

function

Start

IQS316 MCLR

High

Figure 3.6 Init Function

3.2.3 Comms_init

The Comms_Init function sets the registers in the PIC18F4550 to start the SPI communication.

Once the IQS316 MCLR is released, the Comms_init function performs a short routine to
ensure that the IQS316 is at the start of a communication session.

3.2.4 CommsIQS316_send

The CommsIQS316_send function is a basic function called by all other SPI communication
functions. This function waits for the ready signal from the IQS316 before starting the
communication. Next, the slave select (SS) line to the IQS316 is pulled LOW. The
communication is done by clearing the interrupt flags and writing the data to be sent to the
IQS316 in the data buffer. A loop waits for the communication to be completed and the
received data is read from the data buffer and returned by the function.

3.2.5 CommsIQS316_Start_Write

The CommsIQS316_Start_Write function sends a Zero (00H) to the IQS316 to initialize a
communication session, indicating that data will be written to the IQS316.

3.2.6 CommsIQS316_Start_Read

The CommsIQS316_Start_Read function sends a One (01H) to the IQS316 to initialize a
communication session, indicating that data will be read from the IQS316.

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 37 of 45

All Rights Reserved. Revision 0.01 November 2010

3.2.7 CommsIQS316_Write

The CommsIQS316_Write function requires an address and a data byte as parameters. The
address is sent to the IQS316, after which the data byte is also sent, using of the
CommsIQS316_send function.

Note that the SPI channel has to be initialized with a CommsIQS316_Start_Write command in
order for this function to execute correctly. Once communication is in write mode however,
multiple CommsIQS316_Write commands may be executed consecutively.

3.2.8 CommsIQS316_Read

The CommsIQS316_Read function requires an address from which to read as parameter. The
address is sent to the IQS316, which is placed in the Address Pointer. Next, FEH is sent to the
IQS316. The byte returned during the cycle during which the FEH is sent, will be the data
stored at the location indicated by the Address Pointer, which will be the address sent as
parameter. This byte is returned to the master.

Note that the SPI channel has to be initialized with a CommsIQS316_Start_Read command in
order for this function to execute correctly. Once communication is in read mode, the
CommsIQS316_Read and CommsIQS316_Read_Next functions may be executed multiple
times.

3.2.9 CommsIQS316_Read_Next

The CommsIQS316_Read_Next function sends FEH to the IQS316 by means of the
CommsIQS316_send function. The data returned to the SPI buffer is returned. This function
will read the data stored in the address indicated by the Address Pointer.

Note that the Address Pointer is automatically incremented after each read operation, unless it
was set to a specific value during that read operation. The default value of the Address Pointer
is 10H and the Address Pointer will reset to this value every time that the SPI communication
channel is terminated and initiated.

3.2.10 CommsIQS316_Terminate

The CommsIQS316_terminate function sends FFH to the IQS316, which terminates the SPI
communication with the IQS316. The IQS316 will read the next byte received to determine
whether the next communication session will be in read or write mode.

3.2.11 CommsIQS316_Initiate_Conversion

A 00H and FEH are sent to the IQS316 consecutively. If no SPI communication session was
active, this will send the command to the IQS316 to start with the next conversion of data,
hence calculating new data.

3.2.12 Comms_Error

The Comms_Error function can be called from any of the SPI functions if an unexpected value
is received. During developmental stages, this function may be used to indicate that an error

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 38 of 45

All Rights Reserved. Revision 0.01 November 2010

has occurred during communication. In final stages it would probably be preferred to simply
restart the system in the case that an error is detected.

3.2.13 IQS316_Settings

The IQS316_Settings function sends the values to the IQS316 to set the registers necessary
for setting up the proper working of the IQS316.

The IQS316 does not require much configuration except for the thresholds. Each of the 16
channels has individual TOUCH and PROX thresholds. The thresholds can only be set while
their respective groups are active.

To quickly move through all 4 groups, the SKIP_CONV bit is set. By initiating a new
conversion the IQS316 now switches to the next group without calculating PROX and TOUCH
data. After all the thresholds have been set, the SKIP_CONV bit is cleared again to allow for
normal operation again.

A reseed is called and 24 new conversions are called to allow the system to settle before
returning to the main function.

3.2.14 IQS316_New_Conversion

The IQS316_New_Conversion function retrieves data from the IQS316 after a conversion has
been completed. The data is stored in the IQS316 global data structure to be easily accessible
from anywhere in the program.

This function checks whether the IQS316 is in Prox mode or in touch mode by reading the
group number. In the case that the group number is 0, the prox_detected flag is cleared and
the routine exits.

If the group number is not 0, then the prox_detected flag is set and the PROX and TOUCH
data of all the channels are retrieved and stored in the global data structure.

3.3 Sample Code

3.3.1 Global Variables

struct {
 unsigned char prox_detected; //flag to indicate whether IQS316 is in prox mode or touch mode
 unsigned char prox4_11; //prox status of channels 4-11
 unsigned char prox12_19; //prox status of channels 12-19
 unsigned char touch4_11; //touch status of channels 4-11
 unsigned char touch12_19; //touch status of channels 12-19
} IQS316;

3.3.2 Functions

void main(void)
{
 init();

 while(1)
 {
 IQS316_New_Conversion();
 if (IQS316.prox_detected)
 {
 IQS316_Process_Conversion();
 }

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 39 of 45

All Rights Reserved. Revision 0.01 November 2010

 }
}

void init(void)
{
 ADCON1 = 0x0F; //PORTA all digital operation
 TRISA = 0x01; //RA2,1 outputs, RA0 input.
 TRISD = 0x00; //configure PORTD for output
 LATD = 0x0F; //LEDS off
 TRISB = 0xFF; //PORTB for input
 INTCON2bits.RBPU = 0;

 LATB = 0xFC;

 Comms_init();

/*
 Place other functions responsible for hardware initialization here.
 E.g. LCD_Init();
*/

IQS316_Settings(); //execute after all hardware initializations

}

void Comms_init()
{
 unsigned char temp;

SSPCON1 = 0x31; //enables SSP, clock set
 TRISB = TRISB | 0x01; //set TRISB<0>
 TRISB = TRISB & 0xFD; //clear TRISB<1>
 TRISC = TRISC & 0x7F; //clear SDO<7>

 LATA = LATA | 0x04; //pull RA2 (SPI_SELECT) high

LATA = LATA | 0x02; //pull RA1 (Slave select high)
 LATA = LATA | 0x08; //MCLR High

temp = CommsIQS316_send(0xFF); //sequence to ensure correct comms initialization
while (temp != 0xFF)
{
 temp = CommsIQS316_send(0xFF);
}
temp = CommsIQS316_send(0xFF);

}

unsigned char CommsIQS316_send(unsigned char send_data)
{
 unsigned char temp;

 while (PORTAbits.RA0 == 0) //wait for ready signal
 {}
 LATA = LATA & 0xFD; //pull SS line low
 PIR1bits.SSPIF = 0; //clear flag
 temp = SSPBUF; //perform read
 SSPBUF = send_data; //initiate transmission
 while (PIR1bits.SSPIF == 0) //wait for interrupt flag
 {}
 temp = SSPBUF;

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 40 of 45

All Rights Reserved. Revision 0.01 November 2010

 LATA = LATA | 0x02; //release SS line
 return temp;
}

void IQS316_Settings(void)
{
 unsigned char start_num, temp;

 CommsIQS316_Start_Read(); //read group number
 start_num = CommsIQS316_Read(GROUP_NUM);
 CommsIQS316_Terminate();

 CommsIQS316_Start_Write(); //set the CONV_SKIP bit
 CommsIQS316_Write(PROX_SETTINGS_2, 0x09);
 CommsIQS316_Terminate();

 temp = start_num;

 do
 {
 switch (temp)
 {
 case 0:
 CommsIQS316_Start_Write();
 CommsIQS316_Write(LTA_04_HI, 0x00);
 CommsIQS316_Write(LTA_15_HI, 0x00);
 CommsIQS316_Write(LTA_26_HI, 0x00);
 CommsIQS316_Write(LTA_37_HI, 0x00);
 CommsIQS316_Terminate();
 break;
 case 1:
 CommsIQS316_Start_Write();
 CommsIQS316_Write(LTA_04_HI, 0x00);
 CommsIQS316_Write(LTA_15_HI, 0x00);
 CommsIQS316_Write(LTA_26_HI, 0x00);
 CommsIQS316_Write(LTA_37_HI, 0x00);
 CommsIQS316_Terminate();
 break;
 case 2:
 CommsIQS316_Start_Write();
 CommsIQS316_Write(LTA_04_HI, 0x00);
 CommsIQS316_Write(LTA_15_HI, 0x00);
 CommsIQS316_Write(LTA_26_HI, 0x00);
 CommsIQS316_Write(LTA_37_HI, 0x00);
 CommsIQS316_Terminate();
 break;
 case 3:
 CommsIQS316_Start_Write();
 CommsIQS316_Write(LTA_04_HI, 0x00);
 CommsIQS316_Write(LTA_15_HI, 0x00);
 CommsIQS316_Write(LTA_26_HI, 0x00);
 CommsIQS316_Write(LTA_37_HI, 0x00);
 CommsIQS316_Terminate();
 break;
 case 4:
 CommsIQS316_Start_Write();
 CommsIQS316_Write(LTA_04_HI, 0x00);
 CommsIQS316_Write(LTA_15_HI, 0x00);

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 41 of 45

All Rights Reserved. Revision 0.01 November 2010

 CommsIQS316_Write(LTA_26_HI, 0x00);
 CommsIQS316_Write(LTA_37_HI, 0x00);
 CommsIQS316_Terminate();
 break;
 }

 CommsIQS316_Initiate_Conversion();
 CommsIQS316_Start_Read();
 temp = CommsIQS316_Read(GROUP_NUM);
 CommsIQS316_Terminate();
 } while (temp != start_num); //ensure all groups have been set.

 CommsIQS316_Start_Write(); //clear CONV_SKIP bit
 CommsIQS316_Write(PROX_SETTINGS_2, 0x01);
 CommsIQS316_Terminate();

 for (temp = 0; temp <= 23; temp++)
 {
 CommsIQS316_Initiate_Conversion();
 }
 //initial conversions to allow system to settle

 CommsIQS316_Start_Write();
 CommsIQS316_Write(UI_SETTINGS0, 0xA2); //set to 0xB2 for high touch thresholds
 CommsIQS316_Terminate();
 CommsIQS316_Initiate_Conversion();
/*
 Place other commands to set up the IQS316 here.
*/
}

void IQS316_New_Conversion(void)
{
 unsigned char temp_num, start_num, temp_touch, temp_prox;

 CommsIQS316_Initiate_Conversion();

 CommsIQS316_Start_Read();
 temp_num = CommsIQS316_Read(GROUP_NUM);
 CommsIQS316_Terminate();

 if (temp_num == 0)
 {
 IQS316.prox_detected = 0; //clear flag
 }
 else
 {
 IQS316.prox_detected = 1; //set flag
 start_num = temp_num;
 do
 {
 CommsIQS316_Start_Read();
 temp_touch = CommsIQS316_Read(TOUCH_STAT);
 temp_prox = CommsIQS316_Read(PROX_STAT);
 CommsIQS316_Terminate();

 switch(temp_num)
 {
 case 1:

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 42 of 45

All Rights Reserved. Revision 0.01 November 2010

 IQS316.prox4_11 = IQS316.prox4_11 & 0xF0;
 IQS316.touch4_11 = IQS316.touch4_11 & 0xF0;

 IQS316.prox4_11 = IQS316.prox4_11 | (temp_prox & 0x0F);
 IQS316.touch4_11 = IQS316.touch4_11 | (temp_touch & 0x0F);
 break;
 case 2:
 IQS316.prox4_11 = IQS316.prox4_11 & 0x0F;
 IQS316.touch4_11 = IQS316.touch4_11 & 0x0F;

 IQS316.prox4_11 = IQS316.prox4_11 | ((temp_prox & 0x0F) << 4);
 IQS316.touch4_11 = IQS316.touch4_11 | ((temp_touch & 0x0F) <<
4);
 break;
 case 3:
 IQS316.prox12_19 = IQS316.prox12_19 & 0xF0;
 IQS316.touch12_19 = IQS316.touch12_19 & 0xF0;

 IQS316.prox12_19 = IQS316.prox12_19 | (temp_prox & 0x0F);
 IQS316.touch12_19 = IQS316.touch12_19 | (temp_touch & 0x0F);
 break;
 case 4:
 IQS316.prox12_19 = IQS316.prox12_19 & 0x0F;
 IQS316.touch12_19 = IQS316.touch12_19 & 0x0F;

 IQS316.prox12_19 = IQS316.prox12_19 | ((temp_prox & 0x0F) <<
4);
 IQS316.touch12_19 = IQS316.touch12_19 | ((temp_touch & 0x0F)
<< 4);
 break;
 }

 CommsIQS316_Initiate_Conversion();
 CommsIQS316_Start_Read();
 temp_num = CommsIQS316_Read(GROUP_NUM);
 CommsIQS316_Terminate();

 } while ((temp_num != 0) && (temp_num != start_num)); //ensure all groups are checked

 }
}

void IQS316_Process_Conversion (void)
{
/*
 Place code here to process data in the IQS316 structure.
*/
}

void CommsIQS316_Start_Write(void)
{
 unsigned char temp;
 temp = CommsIQS316_send(0x00); //initialize comms in write mode
 if (temp != 0xFF) //check for unexpected return value
 {
 Comms_Error();
 }
}

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 43 of 45

All Rights Reserved. Revision 0.01 November 2010

void CommsIQS316_Start_Read(void)
{
 unsigned char temp;
 temp = CommsIQS316_send(0x01); //initialize comms in read mode
 if (temp != 0xFF) //check for unexpected return value
 {
 Comms_Error();
 }
}

void CommsIQS316_Write(unsigned char write_addr, unsigned char data)
{
 CommsIQS316_send(write_addr);
 CommsIQS316_send(data);
}

unsigned char CommsIQS316_Read(unsigned char read_addr)
{
 unsigned char temp;
 CommsIQS316_send(read_addr);
 temp = CommsIQS316_send(0xFE);
 return temp;
}

unsigned char CommsIQS316_Read_Next(void)
{
 unsigned char temp;
 temp = CommsIQS316_send(0xFE);
 return temp;
}

void CommsIQS316_Terminate(void)
{
 CommsIQS316_send(0xFF);
}

void CommsIQS316_Initiate_Conversion(void)
{
 unsigned char temp;
 temp = CommsIQS316_send(0x00);
 if (temp != 0xFF)
 {
 Comms_Error();
 }
 CommsIQS316_send(0xFE);
}

void Comms_Error(void)
{
 /*
 Place error routine code here
 */
 while (1)
 {}
}

3.3.3 Constant Declarations

// Addresses in the IQS316Memory Map

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 44 of 45

All Rights Reserved. Revision 0.01 November 2010

#define PROD_NUM 0x00
#define VERSION_NUM 0x01

#define UI_FLAGS0 0x10

#define PROX_STAT 0x31
#define TOUCH_STAT 0x35
#define HALT_STAT 0x39
#define GROUP_NUM 0x3D

#define CUR_SAM_04_HI 0x42
#define CUR_SAM_04_LO 0x43
#define CUR_SAM_15_HI 0x44
#define CUR_SAM_15_LO 0x45
#define CUR_SAM_26_HI 0x46
#define CUR_SAM_26_LO 0x47
#define CUR_SAM_37_HI 0x48
#define CUR_SAM_37_LO 0x49

#define LTA_04_HI 0x83
#define LTA_04_LO 0x84
#define LTA_15_HI 0x85
#define LTA_15_LO 0x86
#define LTA_26_HI 0x87
#define LTA_26_LO 0x88
#define LTA_37_HI 0x89
#define LTA_37_LO 0x8A

#define UI_SETTINGS0 0xC4
#define POWER_SETTINGS 0xC5
#define PROX_SETTINGS_1 0xC6
#define PROX_SETTINGS_2 0xC7
#define PROX_CFG1 0xC8
#define CMT_SETTINGS 0xC9
#define ATIC0 0xCA
#define ATIC1 0xCB
#define ATIC2 0xCC
#define ATIC3 0xCD
#define SHLD_SETTINGS 0xCE
#define INT_CAL_SETTINGS 0xCF
#define PM_CX_SELECT 0xD0
#define DEFAULT_COMMS_PTR 0xD1
#define CHAN_ACTIVE0 0xD2
#define CHAN_ACTIVE1 0xD3
#define CHAN_ACTIVE2 0xD4
#define CHAN_ACTIVE3 0xD5
#define CHAN_ACTIVE4 0xD6
#define CHAN_RESEED0 0xD7
#define CHAN_RESEED1 0xD8
#define CHAN_RESEED2 0xD9
#define CHAN_RESEED3 0xDA
#define CHAN_RESEED4 0xDB
#define AUTO_ATI_TARGET_HI 0xDC
#define AUTO_ATI_TARGET_LO 0xDD

#define DIRECT_ADDR_RW 0xFC
#define DIRECT_DATA_RW 0xFD

IQ Switch®

ProxSense™ Series

Copyright © Azoteq (Pty) Ltd 2010. IQS316 Design Guide Page 45 of 45

All Rights Reserved. Revision 0.01 November 2010

Please visit www.azoteq.com for a full portfolio of the ProxSenseTM
Capacitive Sensors, Datasheets, Application Notes and Evaluation Kits

available.
ProxSenseSupport@azoteq.com

PRETORIA OFFICE

Physical Address

160 Witch Hazel Avenue

Hazel Court 1, 1st Floor

Highveld Techno Park

Centurion, Gauteng

Republic of South Africa

Tel: +27 12 665 2880

Fax: +27 12 665 2883

PAARL OFFICE

Physical Address

109 Main Street

Paarl

7646

Western Cape

Republic of South Africa

Tel: +27 21 863 0033

Fax: +27 21 863 1512

